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Fig. 4. Comparison of approximation errors.

approximation is about an order of magnitude more accurate
than the eight-lobed approximation, but this result is offset by
the reduction in the values of the (C,,,,— C,,.)/Cy as & be-
comes smaller.

max

V. COMMENTS

It is interesting that both Table I and Table II show that
Crean — Co becomes positive for sufficiently large values of 8.
The fact that the calculation for the four-lobed case involves, at
most, the determination of K and K’ using the rapidly converg-
ing AGM series virtually rules out the possibility of a numerical
error. The computation for the eight-lobed case is more in-
volved, but here great care was taken to check the accuracy of
each step in the calculations. For example, each complex value
of w obtained by applying the Gauss descending transformation
to the given v and k& was checked for accuracy by resubstituting
into v =sn(w, k). It is believed that these results are accurate to
the order of 10~°.

In both cases, it will be observed that the geometric mean of
Cpax and C.. is a more accurate approximation than their
average. It was only because the error in the average of C,
and C_,, changes sign for smaller values of 8, however, that the
logarithm of the error in the average is plotted in Fig. 4.
Needless to say, the linearity of the data for the two cases and
their parallelism were a surprise.
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A New Procedure for Interfacing the Transmission
Line Matrix (TLM) Method with
Frequency-Domain Solutions

Zhizhang Chen, Wolfgang J. R. Hoefer, and Michel M. Ney

Abstract —This paper presents a new procedure that interfaces the
transmission-line matrix method (TLM) with frequency-domain solu-
tions of electromagnetic fields. Frequency-domain solutions are trans-
formed into appropriate time-domain sequences using the discrete
Fourier transform (DEFT). Hence, the corresponding boundary Johns
matrix can be determined with minimum computational effort. The
subsequent treatment consists in convolving the streams of TLM im-
pulses incident on the boundary with a Jehns matrix generated with the
new approach. The method is applied to obtain the time-domain reflec-
tion sequence of wide-band absorbing terminations in a rectangular
waveguide in the dominant mode operation. In addition, the time-domain
analysis of pulse penetration through a sheet with high, but finite,
conductivity is presented. Good results demonstrate the efficiency of the
proposed procedure.

1. INTRODUCTION

The transmission line matrix (TLM) method has been exten-
sively applied to solve electromagnetic wave propagation, diffu-
sion, and network problems in the time domain [1]-[3]. With its
flexibility and the simplicity of the basic algorithm, the TLM
method can handle arbitrary geometries and account for realis-
tic features that are often neglected with other methods. Re-
cently, two- and three-dimensional transmission line matrix mi-
crowave field simulators using new concepts and procedures
have been presented [4].

In order to characterize structures with large dimensions. the
TLM technique requires large memory space and CPU time.
More recently, a general partitioning technigue based on the
Johns matrix concept [5], [6] has been developed to overcome
this problem for certain applications.

In the following, a new procedure for interfacing TLM tech-
niques with frequency-domain solutions is described: either scat-
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tering parameters or the relations between electric and mag-
netic fields on a boundary or interface limiting regions, computed
in the frequency domain, are transformed into time-domain
sequences. The sequences of impulses are equivalent to the ones
that would produce a corresponding Johns matrix, describing
subregions for TLM simulations [7]. The subsequent step is to
convolve any impulse stream incident upon such a boundary
with the time-domain sequences or Johns matrix thereby gener-
ated.

II. Basic THEORY

Let X(f) be a frequency-domain solution, for example, a
frequency-dependent complex reflection coefficient, and x(¢)
the corresponding time-domain solution. Then by sampling or
discretizing X(f), one can obtain the corresponding discrete
x(t) via various synthesis techniques. For the sake of simplicity,
the discrete Fourier transform (DFT) technique is employed in
this paper.

The discrete and inverse discrete Fourier transforms are [8]

N-1
X, = Y xeliikem/N),
i=0

k=0,1,2,--,N=1 (1)

LNZE
Xp=— 3, XekCm/M  [=0,1,2,---,N-1 (2)
NL=0

where
X, = X(kAf) (3)

1 N-1 .
xk=x(kAt)=N Y X,ek@m/N) 4)
=0

and j is the complex operator (j =y —1), N is the total number
of iterations of the time-domain solution or the total number of
sampling points of the frequency-domain solution, A f =1/(NA¢)
is the sampling frequency, and At is the time step determined
by the TLM model.

TLM simulations require that any time-domain solution be
real. Therefore, in order to make x, compatible with the TLM,
x, must be real. As a result, X, must satisfy the following
conditions [8]: .

Re(Xy_;)=Re(X) (%)
Im(Xy_,)=-Im(X,) (6)

where k=1,2,--+,(N/2)—1 when N is even and k=
1,2,---,(N—1)/2 when N is odd. Consequently, before com-
puting x(kA¢) from X(kAf) via (4), one should modify X(f) or
X(kAf) so that (5) and (6) are satisfied. As shown in Fig. 1 the
modified X(f)or X(kAf) ar;avthe same as the original X(f) or

X(kAf) at least for f<(7~l)Af when N is even, or

f< Af when N is odd. On the other hand, as indicated in

[3], the dispersion caused by the space and time discretization of
TLM networks can be neglected only when the operating fre-
quency, f, is below a certain value, say f,.. For example, in
2-D shunt node TLM models, one may select Al /A< 0.1 or
f < fmax =0-1c /Al (¢ the speed of light) as the practically
dispersionless frequency range in free space (0.1 factor can be
smaller, depending on the required minimum dispersion error).
This means that the TLM solution can only be accurate for
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Fig. 2. M-port microwave network.

f < fuax- Thus, N or Af should be chosen in such a way that

N
(3~1)Af>fmdx for N even (7

N-1
(——2——1)Af>fmax for N odd. (8)

This ensures that the frequency at which the discrete spec-
trum is modified to satisfy conditions (5) and (6) is beyond the
frequency limit at which the TLM solution is accurate. In
addition, one can use a low-pass digital filter in order to reject
the unwanted high-frequency components of the time-domain
sequence x, before it can be convolved with the incident
sequence. This is simply achieved by doing the convolution of
the x}s with the noncausal discrete impulse response of the
appropriate low-pass filter.

III. Jouns MATRIX GENERATION OF A MICROWAVE NETWORK

Consider an M-port network, as shown in Fig. 2, with its given
frequency-domain scattering parameters [ S(f)]. If the scattering
parameters are defined with respect to field quantities and,
therefore, are compatible with the TLM quantities, the Johns
matrix can be obtained from (3) and (4):

1 N-1
G(nm,k)=— 3 S,u(i0f)e "8 )
N =0
where m,n=1,2,-++,M, N are the numbers of iterations, and

Af=1/(NAt) is the sampling frequency. In addition, according
to (5) and €6), S,,,,(f) must be modified so that

Re S, ((N—i)Af) =ReS,,(iAf) (10)

Finally, the output sequence of ¥7(n, k) at port n is obtained
by convolution of the Johns matrix, generated via (9), with the
incident impulses at every port:

M K
Vi(n,ky= 3. Y, G(n,m, k=KW (m,K).

m=1k =0

(12)

Once the Johns matrices of several networks are known, the
cascading of the networks in the time domain can be performed
using Bewley diagram, which is described in detail by Hoefer [7].

The method described here saves considerable computation
time and memory for generating the Johns matrix, especially
when the frequency-domain scattering parameters S(f) of the
network at the sampling points kKA f can be expressed analyti-
cally or obtained by measurements. The principle of the method
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is general and can be easily extended to a variety of electromag-
netic problems such as three-dimensional inhomogeneously filled
and unbounded structures.

IV. NumericaL ResuLts
A. Application to Wide-Band Absorbing Boundaries in Waveguides

Owing to finite computer resources, the TLM mesh must be
limited at some locations where appropriate boundary condi-
tions, such as absorbing boundaries or matched loads, are in-
serted in order to simulate the properties of the truncated
region. The methods for obtaining TLM wide-band absorbing
boundaries in waveguides were recently described in a paper by
Eswarappa et al. [9]. Two different approaches were employed:

a) modeling of a waveguide termination with gradually in-
creasing loss,

b) modeling of a waveguide termination with a very long
uniform waveguide section.

With the method presented in this paper, instead of modeling
the termination physically by waveguide sections, the TLM
absorbing boundary termination or matching load of the wave-
guide is modeled by an artificially reflecting wall with the
frequency-domain reflection coefficient T'(f):

Z(f)/ﬁ_ﬂo

1= Z(f)/V2 +

(13)

where Z(f)=mnq/Ve€, —(f. /f)2 is the wave impedance of the

dominant mode in the waveguide, f is the operating frequency,
f. is the cutoff frequency of the air-filled waveguide, €, is the
relative permittivity of the medium filling the guide, 7, is the
characteristic impedance of the link line of the TLM network,
and the correction factor V2 is inherent to the slow-wave
property of the 2-D TLM network [3].

Now, the procedure outlined in this paper is applied to the
case of a WR28 waveguide. A section of it with a width of 30A/
is terminated at each side by absorbing boundaries (or matched
load) for the dominant mode (see Fig. 3(a)). First, a time-domain
sequence is generated by computing the inverse DFT of (13),
corresponding to both limiting absorbing boundaries. The CPU
time required for generating the sequences is only few seconds,
which is at least three orders of magnitude below that reported
in [9] if those approaches are used to obtain the same time-
domain sequences. Subsequently, a TE ; mode field is injected
in the TLM mesh with impulse time function, in order to
simulate a wide-band excitation. As the TLM impulses propa-
gate through the TLM network and reach the absorbing bound-
aries, they are convolved at the boundary nodes with the stored
sequences simulating the absorbing boundaries. After a suffi-
cient number of iterations (in this case 2000), the Fourier
transform of the signal is performed at a few nodes (a minimum
of two is required), from which the VSWR can be easily and
rapidly determined and, therefore, the return loss calculated.
Fig. 3(b) shows the return loss produced by both terminations
over a wide frequency range. One can see that a return loss
better than —35 dB is achieved over the operating range.

B. Application to Highly Conductive Shields

The method can also be applied to the case of electromag-
netic field diffusion through highly conducting materials. A
typical application is the evaluation of shield effectiveness of
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Fig. 3. (a) TLM model for a WR28 rectangular waveguide. (b) Return

loss of two back-to-back absorbing terminations for WR28. The ripple
indicates mismatch at high frequencies caused by discretization.

cavities against electromagnetic interference (EMI). The excita-
tion is most likely a transient function, for which a time-domain
solution is the most appropriate. The TLM is an ideal tool for
that application, except that in order to avoid network space and
frequency dispersion, a very large number of nodes are neces-
sary within highly conducting media [3] because of high conduc-
tivity, making the computational effort beyond practical limit.
In order to circumvent this problem, a Johns matrix can be
used. Unfortunately, for the reasons explained above, the gener-
ation of such a matrix requires a large amount of CPU time and
memory core in most practical cases, However, with the method
described here, the shielding wall can be replaced by a section
of lossy transmission line inserted into the TLM network as
shown in Fig. 4. It is assumed that adjacent nodes on the
conducting surface do not interact, which is a realistic hypothe-
sis if one considers that fields are rapidly attenuated within the
shield. The scattering parameters of such lossy lines defined by
the electromagnetic field component ratios can be determined
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easily from a harmonic field analysis or transmission line theory:

5, =2t 14)
Uz (
1+,
2= T (1+8y) (15)
Ss1 =84, (16)
Sp=35u (17)

where y = \/jw,u,(\/ia- +2jwe) , Z, = Q2e, +(V20)/jwey)) 12,
Z,=Z2,+ Z th(ydD/(Z,+ th(yd), T,=U0-2)/0+2Z,),
w=27f, e=¢,¢€, f is the frequency, €, is the permittivity of
the vacuum, and e,, u, o, and d are, respectively, the relative
permittivity, permeability, and thickness of the conducting shield.
And the correction factor 2 and V2 is inherent to the slow-wave
property of the 2-D TLM network [3].

The transient field that impinges on a plane conducting wall is
modeled by the following time function:

eo(t) = de 1" /21

(18)
where A is the value of ey(0), ¢ is the time, and ¢, is a measure
of the pulse width. A plane wave with the above time depen-
dence was incident on the conducting wall (see Fig. 5(a)). The
time function was observed at a node located behind the wall
after 1000 iterations. The signal is shown in Fig. 5(b) and
compared with an analytical approach whose time-domain solu-
tion is found by the numerical inverse Fourier transform calcula-
tion [10]. Good agreement between two methods can be ob-
served.

V. CONCLUSION

A novel procedure based on time—frequency transformation
for interfacing TLM algorithm with frequency-domain solutions
has been presented. It uses the a priori knowledge of the
frequency behavior of such parameters as reflection coefficients,
network parameters, and impedances, which are known in many
practical situations. The relationship between the frequency-
domain parameters and the corresponding Johns matrix of the
network based on a DFT has been presented in detail. The
examples pertaining to modeling of the absorbing waveguide
termination and the field penetration through a highly conduc-
tive sheet demonstrate the efficiency of the approach. With
respect to CPU time, the procedure for generating the Johns
matrix pertaining to such problems is orders of magnitude less
than that required by other methods.
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Bris-

Open Resonator for Precision Dielectric
Measurements in the 100 GHz Band

B. Komiyama, M. Kiyokawa, and T. Matsui

Abstract —Dielectric properties of fused silica, MgO, AIN, and BN
were measured using an open resonator at frequencies around 100 GHz.
The resonator is of the semiconfocal type and consists of a concave and
a plane mirror, and the frequency variation method is used. To increase
the reliability of measurement data, the operating frequency and thick-
ness of the samples were chosen so as to make the parameter A =1 for
every sample. The radius of curvature of the concave mirror is deduced
with sufficient accuracy from the resonant frequencies of the TEM,,
and TEM,, modes, which results in a precise determination of res-
onator length. The standard deviation of measurements was less than
0.1% in permittivity and about 10% in loss tangent.

I. INTRODUCTION

Low-loss dielectric materials are of key importance in short-
millimeter-wave circuit components and quasi-optical elements
such as windows, lenses, beam splitters, and substrates. With
increasing demands for improved performance in these compo-
nents and elements, the measurement of the properties of
dielectric materials in this wave band has become more impor-
tant {1].

In the short-millimeter-wave region, dispersive Fourier trans-
form spectrometers and interferometric spectrometers of the
Mach-Zender type are often used for dielectric measurement
[1]-[31. In comparison with these spectrometers, the Fabry—Perot
open resonator technique [4] is more advantageous for the
measurement of low-loss materials, However, few data were
available at frequencies higher than 35 GHz [5], [6] because of
the difficulty in constructing high-Q cavities and detecting ab-
sorption with enough S /N at these frequencies.
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